lunes, 10 de agosto de 2015

Microondas, satélital

Microondas

Se denomina microondas a las ondas electromagnéticas; generalmente de entre 300 MHz y 300 GHz, que supone un período de oscilación de 3 ns (3×10−9 s) a 3 ps (3×10−12 s) y una longitud de onda en el rango de 1 m a 1 mm. Otras definiciones, por ejemplo las de los estándares IEC 60050 y IEEE 100 sitúan su rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda de entre 30 centímetros a 1 milímetro. El rango de las microondas está incluido en las bandas de radiofrecuencia, concretamente en las de UHF (ultra-high frequency - frecuencia ultra alta) 0,3-3 GHz, SHF (super-high frequency - frecuencia súper alta) 3-30 GHz y EHF (extremely-high frequency - frecuencia extremadamente alta) 30-300 GHz. Otras bandas de radiofrecuencia incluyen ondas de menor frecuencia y mayor longitud de onda que las microondas. Las microondas de mayor frecuencia y menor longitud de onda —en el orden de milímetros— se denominan ondas milimétricas.
La existencia de ondas electromagnéticas, de las cuales las microondas forman parte del espectro de alta frecuencia, fueron predichas por Maxwell en 1864 a partir de sus famosas Ecuaciones de Maxwell. En 1888, Heinrich Rudolf Hertz fue el primero en demostrar la existencia de ondas electromagnéticas mediante la construcción de un aparato para generar y detectar ondas de radiofrecuencia.
Las microondas pueden ser generadas de varias maneras, generalmente divididas en dos categorías: dispositivos de estado sólido y dispositivos basados en tubos de vacío. Los dispositivos de estado sólido para microondas están basados en semiconductores de silicio o arseniuro de galio, e incluyen transistores de efecto campo (FET), transistores de unión bipolar (BJT), diodos Gunn y diodos IMPATT. Se han desarrollado versiones especializadas de transistores estándar para altas velocidades que se usan comúnmente en aplicaciones de microondas.
En telecomunicaciones, las microondas son usadas en radiodifusión, ya que estas pasan fácilmente a través de la atmósfera con menos interferencia que otras longitudes de onda mayores. También hay más ancho de banda en el espectro de microondas que en el resto del espectro de radio. Usualmente, las microondas son usadas en programas informativos de televisión para transmitir una señal desde una localización remota a una estación de televisión mediante una camioneta especialmente equipada. Protocolos 802.11g y b también usan microondas en la banda ISM, aunque la especificación 802.11a usa una banda ISM en el rango de los 5 GHz. La televisión por cable y el acceso a Internet vía cable coaxial usan algunas de las más bajas frecuencias de microondas. Algunas redes de telefonía celular también usan bajas frecuencias de microondas.

En la industria armamentística, se han desarrollado prototipos de armas que utilicen la tecnología de microondas para la incapacitación momentánea o permanente de diferentes enemigos en un radio limitado.
La tecnología de microondas también es utilizada por los radares, para detectar el rango, velocidad, información meteorológica y otras características de objetos remotos; o en el máser, un dispositivo semejante a un láser pero que trabaja con frecuencias de microondas.
Las cámaras de RF ejemplifican el gran cambio que recientemente ha surgido en este tipo de tecnologías. Desempeñan un papel importante en el ámbito de radar, detección de objetos y la extracción de identidad mediante el uso del principio de imágenes microondas de alta resolución, que consiste, esencialmente, en un transmisor de impulsos para iluminar la tarjeta, un auto-adaptador aleatorio de fase seguido por un receptor de microondas que produce un holograma a través del cual se lee la información de la fase e intensidad de la tarjeta de radiación.

Bandas de frecuencia



 Radiofrecuencia


Radiofrecuencia, también denominado espectro de radiofrecuencia, ondas de radio o RF, se aplica a la porción menos energética del espectro electromagnético, situada entre unos 3 Hz y unos 300 GHz. El hercio es la unidad de medida de la frecuencia de las ondas, y corresponde a un ciclo por segundo.2 Las ondas electromagnéticas de esta región del espectro, se pueden transmitir aplicando la corriente alterna originada en un generador a una antena.
Por el otro lado están las Redes Inalámbricas de Radiofrecuencia, la FCC permitió la operación sin licencia de dispositivos que utilizan 1 Watt de energía o menos, en tres bandas de frecuencia: 902 a 928 MHz, 2,400 a 2,483.5 MHz y 5,725 a 5,850 Mhz. Estas bandas de frecuencia, llamadas bandas ISM, estaban anteriormente limitadas a instrumentos científicos, médicos e industriales. Esta banda, a diferencia de la ARDIS y MOBITEX, está abierta para cualquiera. Para minimizar la interferencia, las regulaciones de FCC estipulan que una técnica de señal de transmisión llamada spread-spectrummodulation, la cual tiene potencia de transmisión máxima de 1 Watt. Deberá ser utilizada en la banda ISM. Esta técnica a sido utilizada en aplicaciones militares. La idea es tomar una señal de banda convencional y distribuir su energía en un dominio más amplio de frecuencia. Así, la densidad promedio de energía es menor en el espectro equivalente de la señal original. En aplicaciones militares el objetivo es reducir la densidad de energía abajo del nivel de ruido ambiental de tal manera que la señal no sea detectable. La idea en las redes es que la señal sea transmitida y recibida con un mínimo de interferencia. Existen dos técnicas para distribuir la señal convencional en un espectro de propagación equivalente :
La radiofrecuencia se puede dividir en las siguientes bandas del espectro:
La secuencia directa: En este método el flujo de bits de entrada se multiplica por una señal de frecuencia mayor, basada en una función de propagación determinada. El flujo de datos original puede ser entonces recobrado en el extremo receptor correlacionándolo con la función de propagación conocida. Este método requiere un procesador de señal digital para correlacionar la señal de entrada.
El salto de frecuencia: Este método es una técnica en la cual los dispositivos receptores y emisores se mueven sincrónicamente en un patrón determinado de una frecuencia a otra, brincando ambos al mismo tiempo y en la misma frecuencia predeterminada. Como en el método de secuencia directa, los datos deben ser reconstruidos en base del patrón de salto de frecuencia. Este método es viable para las redes inalámbricas, pero la asignación actual de las bandas ISM no es adecuada, debido a la competencia con otros dispositivos, como por ejemplo las bandas de 2.4 y 5.8 Mhz que son utilizadas por hornos de Microondas.


Satelital

Básicamente un sistema satelital es un sistema repetidor. La capacidad de recibir y retransmitir se debe a un dispositivo receptor-transmisor llamado transponder, cada uno de los cuales escuchan una parte del espectro, la amplifica y retransmite a otra frecuencia para evitar la interferencia de señales.
Un sistema satelital consiste en un cierto número de transponder además de una estación terrena maestra para controlar su operación, y una red de estaciones terrenas de usuarios, cada uno de los cuales posee facilidad de transmisión y recepción. El control se realiza generalmente con dos estaciones terrenas especiales que se encargan de la telemetría, el rastreo y la provisión de los comandos para activar los servicios del satélite.
Un vínculo satelital consta de:
  • Un enlace tierra-satelite o enlace ascendente (uplink)
  • Un enlace satelite-tierra o enlace descendente (downlink)
El satélite permanece en órbita por el equilibrio entre la fuerza centrífuga y la atracción gravitatoria.
Si se ubica el satélite a una altura de 35860 Km sobre el plano del Ecuador, estos giran en torno a la tierra a una velocidad de 11070 Km./hr, con un periodo de 24 hrs. Esto hace que permanezca estacionario frente a un punto terrestre, de allí su nombre de satélite geoestacionario. De este modo las antenas terrestres pueden permanecer orientadas en una posición relativamente estable en un sector orbital.
Debido a su gran potencia los satélites para Tv necesitan de un espaciamiento de por lo menos 8 grados, para así evitar que el haz proveniente de la Tierra ilumine a los satélites vecinos también.
Los sistemas satelitales constan de las siguientes partes:
  • Transponders
  • Estaciones terrenas
El transponder es un dispositivo que realiza la función de recepción y transmisión. Las señales recibidas son amplificadas antes de ser retransmitidas a la tierra. Para evitar interferencias les cambia la frecuencia.
Las estaciones terrenas controlan la recepción con/desde el satélite, regula la interconexión entre terminales, administra los canales de salida, codifica los datos y controla la velocidad de transferencia.
Consta de 3 componentes:
  • Estación receptora: Recibe toda la información generada en la estación transmisora y retransmitida por el satélite.
  • Antena: Debe captar la radiación del satélite y concentrarla en un foco donde esta ubicado el alimentador.
Una antena de calidad debe ignorar las interferencias y los ruidos en la mayor medida posible.
Estos satélites están equipados con antenas receptoras y con antenas transmisoras. Por medio de ajustes en los patrones de radiación de las antenas pueden generarse cubrimientos globales (Intelsat), cubrimiento a solo un país (satélites domésticos), o conmutar entre una gran variedad de direcciones.
  • Estación emisora: Está compuesta por el transmisor y la antena de emisión.
La potencia emitida es alta para que la señal del satélite sea buena. Esta señal debe ser captada por la antena receptora. Para cubrir el trayecto ascendente envía la información al satélite con la modulación y portadora adecuada.
Como medio de transmisión físico se utilizan medios no guiados, principalmente el aire. Se utilizan señales de microondas para la transmisión por satélite, estas son unidireccionales, sensibles a la atenuación producida por la lluvia, pueden ser de baja o de alta frecuencia y se ubican en el orden de los 100 MHz hasta los 10 GHz.
Bandas de frecuencias utilizadas
Se han dispuesto, mundialmente, varias bandas de frecuencia para su uso comercial por satélite. La más común de estas consta de una banda central de 500 MHz centrada en 6 GHz en el enlace hacia arriba (hacia el satélite) y centrada en 4 GHz en el enlace hacia abajo (hacia la Tierra).
La banda de 500 MHz, en cada una de las frecuencias, esta normalmente dividida en 12 bandas, servidas por cada transponder, de 36 MHz de ancho de banda cada una, más 2 MHz a ambos extremos para protección (el espaciamiento entre las bandas es el responsable del ancho de banda en exceso). Cada banda de transponder esta, a su vez, dividida en un cierto número de canales de frecuencia, dependiendo del tipo de aplicación o de la señal que sé este transmitiendo.
Las bandas de frecuencia usadas son:
  • C: uplink 5,925-6,425 GHz, downlink 3,7-4,2 GHz
  • Ku: uplink 14-14,5 GHz, downlink 11,7-12,2 GHz
  • Ka: uplink 19,7 GHz, downlink 31Ghz
Las bandas inferiores se encuentran superpobladas. No así las bandas superiores.
En la banda Ku los satélites pueden espaciarce a i grado. Pero estas ondas tienen un inconveniente, la lluvia, ya que el agua es un gran absorbente de estas microondas tan cortas.
Métodos de múltiple acceso
Múltiple acceso esta definido como una técnica donde más de un par de estaciones terrenas puede simultáneamente usar un transponder del satélite.
La mayoría de las aplicaciones de comunicaciones por satélite involucran un numero grande de estaciones terrenas comunicándose una con la otra a través de un canal (de voz, datos o video). El concepto de múltiple acceso involucra sistemas que hacen posible que múltiples estaciones terrenas interconecten sus enlaces de comunicaciones a través de un simple transponder. Estas portadoras pueden ser moduladas por canales simples o múltiples que incluyen señales de voz, datos o video.
Existen muchas implementaciones específicas de sistemas de múltiple acceso, pero existen solo tres tipos de sistemas fundamentales:
  • FDMA : acceso múltiple por división de frecuencia.
  • TDMA : acceso múltiple por división de tiempo.
  • DAMA : acceso múltiple por división de demanda (versión de TDMA)
  • CDMA : acceso múltiple por división de código.
Ventajas y desventajas de la transmisión vía satélite
Por presentar una cobertura territorial muy amplia genera serios problemas de seguridad, ya que cualquier estación puede captarlos con solo sintonizar la frecuencia del satélite. Para evitarlo se adicionan medidas de seguridad: cifrado y encriptado de transmisiones.
Debido a que trabaja en bandas de frecuencias muy altas cada satélite es capaz de soportar varios miles de canales telefónicos. Por ejemplo, un satélite moderno esta formado por diez transponder y cada uno con capacidad de 48 Mbps.
Las condiciones meteorológicas adversas pueden afectar la señal durante su camino entre la estación terrena y el satélite. Otra desventaja es la del retardo que puede originar problemas, ya que la señal recorre 36.000 Km de subida y otros tantos de retorno a la Tierra.
Periódicamente el sol, el satélite y la estación terrena quedan alineados provocando una elevación del ruido térmico que supera la intensidad de la señal.
En las grandes ciudades existe actualmente congestión de microondas; se instalaron tantas antenas de microondas que se interfieren unas a otras y las ondas en el aire están saturadas. Esto obliga a buscar un medio de transmisión alternativo como los enlaces vía satélite. Pero una desventaja con respecto al satélite propiamente dicho es que resulta muy costosa la construcción, lanzamiento y mantenimiento del mismo.

CARACTERISTICAS DE LAS COMUNICACIONES POR SATELITE

DESCRIPCION DEL SISTEMA
Un satélite puede definirse como un repetidor de radio en el cielo (transponder), un sistema satelital consiste de un transponder, una estación basada en tierra, para controlar su funcionamiento, y una red de usuario, de las estaciones terrestres, que proporciona las facilidades para transmisión y recepción del trafico de comunicaciones, a través del sistema de satélite.
Las transmisiones de satélite se catalogan como bus o carga útil. La de bus incluye mecanismos de control que apoyan la operación de carga útil. La de carga útil es la información del usuario que será transportada a través del sistema.
En el caso de radiodifusión directa de televisión vía satélite el servicio que se da es de tipo unidireccional por lo que normalmente se requiere una estación transmisora única, que emite los programas hacia el satélite, y varias estaciones terrenas de recepción solamente, que toman las señales provenientes del satélite. Existen otros tipos de servicios que son bidireccionales donde las estaciones terrenas son de transmisión y de recepción.
Uno de los requisitos más importantes del sistema es conseguir que las estaciones sean lo más económicas posibles para que puedan ser accesibles a un gran número de usuarios, lo que se consigue utilizando antenas de diámetro chico y transmisores de baja potencia. Sin embargo hay que destacar que es la economía de escala (en aquellas aplicaciones que lo permiten) el factor determinante para la reducción de los costos.
Modelos de enlace del sistema satelital
Esencialmente, un sistema satelital consiste de tres secciones básicas: una subida, un transponder satelital y una bajada.
·         Modelo de subida
El principal componente dentro de la sección de subida, de un sistema satelital, es el transmisor de la estación terrena. Un típico transmisor de la estación terrena consiste de un modulador de IF, un convertidor de microondas de IF a RF, un amplificador de alta potencia (HPA) y algún medio para limitar la banda del espectro de salida (por ejemplo un filtro pasa-banda de salida).
La Figura 1 muestra el diagrama a bloques de un transmisor de estación terrena satelital. El modulador de IF convierte las señales de banda base de entrada a una frecuencia intermedia modulada e FM, en PSK o en QAM. El convertidor (mezclador y filtro pasa-banda) convierte la IF a una frecuencia de portadora de RF apropiada. El HPA proporciona una sensibilidad de entrada adecuada y potencia de salida para propagar la señal al transponder del satélite. Los HPA comúnmente usados son klystons y tubos de onda progresiva.









lunes, 3 de agosto de 2015

Tipos de Conectores de Fibra Óptica

Tipos de Conectores de Fibra Óptica


ST (Straight Tipo Punta Recta): Es el conector más usado especialmente en terminaciones de cables MM y para aplicaciones de Redes.

Conector ST

 SC (Subscriber Connector or “Square  Connector” ó Conector de Suscriptor): Conector de bajas pérdidas, muy usado en instalaciones de SM y aplicaciones de Redes y CATV.


LC (Lucent Connector or “Littlie Connector”  ó Conector pequeño): Conector más pequeño y sofisticado, usado en Trasceivers y equipos de comunicación de alta densidad de datos.

FC (Ferule Connector  ó Conector Férula): Conector usado para equipos de medición como OTDR. Además comúnmente utilizado en conexiones de CATV.

SMA (Sub Miniature A  ó Conector Sub Miniatura A): Usado en dispositivos electrónico con algunos acoplamientos óptico. Además de uso Militar.

El uso de los acrónimos: PC, APC, UPC; indicando tipo de conexión, es decir Phyical Contact (PC) o Contacto Físico. Angle (A) con ángulos de inclinación en la punta. Y Ultra (U) conexión de muy bajas pérdidas. Por ejemplo: SC / APC

EMPALMES Y CONECTORES DE FIBRA ÓPTICA

Generalidades


 En las instalaciones de sistemas de fibra óptica es necesario utilizar elementos de interconexión a modo de empalmes y conectores. A la hora de realizar estos empalmes y conexiones se debe procurar que las pérdidas sean lo más reducidas posibles. Se recurre al empalme cuando se quiere unir tramos de cable de fibra óptica en enlaces donde la distancia a cubrir es grande, utilizándose también para reparar cables ópticos ya instalados. Actualmente existen tres formas de realizar un empalme de fibras:
Mediante un conector: Es totalmente desmontable, por lo que nos permite la conexión y desconexión repetitiva sin degradación de la transmisión. La única desventaja que esto tiene, es que la atenuación es mayor.
Mediante fusión mecánica: une las fibras preparadas en un tubo ajustado de forma temporal.
Mediante fusión térmica: Es un sistema permanente, el cual consiste en calentar hasta el punto de fusión las puntas preparadas de las dos fibras, las cuales se empalman con una máquina. Lo negativo de éste método es el coste que conlleva dicha máquina.

Empalmes


En los empalmes de fibras ópticas, aseguramos una alta y estable calidad de transmisión en servicio, con un mínimo de mantenimiento, y sometidos a diferentes condiciones ambientales. La pérdida en los empalmes puede ser significativa, siendo especialmente muy sensible al ángulo de corte de los extremos de las fibras a empalmar y a la falta de acuerdo con el diámetro modal. Los empalmes se efectúan en un ambiente limpio, sin polvos en suspensión, bien iluminado, evitando en lo posible la exposición solar directa. La ejecución de los mismos debe ser realizada en el interior de un vehículo acondicionado especialmente para tal fin, así mismo se deja una cantidad suficiente de fibra en un arreglo holgado dentro de las cajas de empalmes, para rehacer eventualmente los mismos si las características finales no responden a las de aceptación. En los casos en que se utilicen substancias químicas como agentes removedores (alcohol isopropílico, terpeno, dicloro metano) se efectúa una especial limpieza posterior, para evitar acciones residuales que podrían causar la degradación de la calidad del empalme.

Los empalmes se protegen convenientemente de acciones mecánicas y ambientales con los dispositivos adecuados como lo son las mangas termocontráctiles. Asimismo se asegura que los radios mínimos de curvatura, en el arreglo de las fibras en las bandejas, se mantenga entre 60 y 75 mm. Para el empalme de una fibra se tienen en cuenta dos parámetros: la pérdida por empalme permitida y el número de intentos para realizar la unión con éxito. La atenuación por empalme ideal se encuentra entre 0,1 dB y 0.2 dB.
Principales causas de pérdidas en empalmes
 Pérdidas intrínsecas
Dependen de la composición del vidrio, impurezas, etc., y no las podemos eliminar. Las ondas de luz en el vacío no sufren ninguna perturbación. Pero si se propagan por un medio no vacío, interactúan con la materia produciéndose un fenómeno de dispersión debida a dos factores:

Dispersión por absorción: la luz es absorbida por el material transformándose en calor. Dispersión por difusión: la energía se dispersa en todas las direcciones. Esto significa que parte de la luz se irá perdiendo en el trayecto, y por lo tanto resultará estar atenuada al final de un tramo de fibra.
Pérdidas extrínsecas 
Son debidas al mal cableado y al empalme de la fibra.

 Pérdidas por curvaturas. Se producen cuando le damos a la fibra una curvatura excesivamente pequeña (radio menor a 4 o 5cm) la cual hace que los haces de luz logren escapar del núcleo, por superar el ángulo máximo de incidencia admitido para la reflexión total interna. También se dan cuando, al aumentar la temperatura y debido a la diferencia entre los coeficientes de dilatación térmica entre fibras y buffer, las fibras se curvan dentro del tubo.
Pérdidas de retorno o reflactancia. Es la pérdida debida a la energía reflejada, se mide como la diferencia entre el nivel de señal reflejada y la señal incidente, es un valor negativo y debe ser menor a -30 dB (típico -40dB). En ocasiones se indica obviando el signo menos. Un ejemplo de estas pérdidas se da en la siguiente tabla

Pérdidas por inserción. Es la atenuación que agrega a un enlace la presencia de un conector o un empalme.

Corte de la fibra


La calidad obtenida en el extremo de la fibra tras el corte afecta a las pérdidas del empalme posterior, resultando difícil obtener superficies pulidas mediante la técnica de empalme por fusión directa. Por este motivo, se han propuesto diversas técnicas de corte de fibras que no utilizan máquina de pulir. En cuatro de estas técnicas, a la fibra se le hace una muesca y posteriormente se dobla para realizar el corte. Entre las distintas posibilidades para producir dicha muesca se encuentran: un filo de cuchilla, una descarga eléctrica, un alambre caliente o un láser de CO2. Incluso existe otra posibilidad que consiste en realizar una muesca y tirar posteriormente de la fibra sin doblarla. De entre todos los métodos, el más ampliamente utilizado es el basado en la muesca con cuchilla o elemento similar y posterior doblez de la fibra.
Tipos de empalmes
Empalmes mecánicos y adhesivos
Tanto los métodos mecánicos como la utilización de adhesivos para realizar el empalme de fibras no se basan en la generación de calor. Por lo tanto, ambos métodos presentan varios aspectos comunes en lo relativo al posicionamiento de las fibras. La técnica básica utiliza ranuras en V realizadas en distintos materiales, tanto duros como blandos (figura 4.1). En el caso de materiales blandos es posible realizar empalmes entre fibras de diferente diámetro, ya que el material se deforma para hacer coincidir los centros de ambos núcleos. El método usual de alineamiento que se utiliza es el fijo (alineamiento pasivo). Dado que ninguno de los dos métodos utiliza fusión, el posicionamiento de las fibras depende de la precisión del substrato y de su evolución con el tiempo. La clave se basa en un substrato preciso de baja pérdida y con fiabilidad a largo plazo. Existen multitud de materiales propuestos, tales como silicio, metales, plásticos y acero. Cuando el coeficiente de dilatación térmica del substrato es similar al de las fibras de sílice, resulta fácil eliminar la variación de las pérdidas con la temperatura y asegurar una fiabilidad a largo plazo.

Generalmente suelen emplearse materiales de adaptación entre las fibras en ambos métodos (mecánicos y adhesivos) para reducir las pérdidas del empalme y las reflexiones. Aunque las pérdidas del empalme no son sensibles al índice de refracción, la reflexión sí que resulta muy sensible. Por lo tanto, se necesita una adaptación de índices muy precisa para suprimir las reflexiones. Cuando se requiere muy baja reflexión, también debe tenerse en cuenta la variación con la temperatura del índice de refracción del material de adaptación. Algunos ejemplos de materiales de adaptación serían el gel y resina de Silicio, adhesivos fotosensibles o resinas de epoxy. En el método de empalme basado en adhesivo se prefiere que éste sirva simultáneamente como material de unión y de adaptación.

Una unión mecánica utiliza una fuerza mecánica para mantener el alineamiento de las fibras, por lo que existe la posibilidad de volver a conectarse. No obstante, resulta generalmente bastante difícil en comparación con un conector óptico. Por otra parte, una unión adhesiva utiliza un material adhesivo para cumplir la función de mantener alineadas las fibras. En este sentido es similar a un empalme por fusión, dado que tiene la característica de ser permanente. Así pues, un empalme mecánico es similar a un conector óptico, mientras que un empalme adhesivo es similar a un empalme por fusión.



Empalmes por fusión


Empalme de fibras por fusión directa. Existen diversos métodos de empalme de fibras ópticas por fusión directa, todos ellos clasificados en base al tipo de fuente de calor utilizada: una descarga eléctrica, un láser gaseoso o una llama. El primero de ellos es el más ampliamente utilizado en el caso de fibras de sílice. En especial, se han desarrollado varias técnicas para realizar empalmes por medio de descarga eléctrica, tales como el método de prefusión, el método de descarga de alta frecuencia con un elevado voltaje de trigger (HHT), y el método de calentamiento uniforme para realizar empalmes de múltiples fibras.

Los métodos de empalme por fusión directa utilizan una fuente de calor para fundir y unir las fibras ópticas. A diferencia de otros métodos que utilizan materiales de adaptación o adhesivos, en este caso no existe ningún otro material más que la propia fibra en la región del empalme. Por lo tanto, este método posee inherentemente bajas pérdidas por reflexión y alta fiabilidad.

En primer lugar, se quitan las cubiertas de las fibras y se cortan. Ambas fibras se sitúan con una cierta separación entre ellas en una máquina empalmadora de fibras y se pulsa un botón para comenzar el proceso. Hasta este punto el trabajo se realiza manualmente por parte de un operario. En el momento de pulsar el botón de la máquina, ésta comienza a mover las fibras para reducir la separación entre las mismas. Durante el movimiento de las fibras, se genera una 
descarga eléctrica que se mantiene durante un período de tiempo predeterminado. Este proceso tiene lugar de forma automática en la máquina empalmadora. Por último, la región donde se ha producido el empalme se protege para facilitar el manejo de la fibra. Actualmente existen máquinas completamente automáticas que realizan todas las acciones: desde quitar las cubiertas hasta proteger el empalme.

Método de prefusión. Aparte de otros factores de pérdidas más comunes presentes al realizar empalmes, tales como desplazamiento lateral o inclinación, el único factor de pérdidas en el caso del método de empalme por fusión es la formación de burbujas confinadas entre ambos extremos de las fibras. Cuando se produce esto, las burbujas introducen elevadas pérdidas de unos pocos decibelios o incluso más. En los procedimientos de empalme anteriores a la existencia del método de prefusión, ambas fibras se presionaban ligeramente y posteriormente se fusionaban por medio de una descarga eléctrica. Sin embargo, cuando los extremos de las fibras no eran lisos se producían desplazamientos laterales y dobleces, además de una mayor probabilidad de formación de burbujas como consecuencia del confinamiento de aire entre las superficies rugosas. Precisamente para evitar todo esto se propuso el método de prefusión.

El procedimiento consiste en situar los extremos de ambas fibras con una separación de unas micras y posteriormente prefusionarlos con una descarga eléctrica, lo que produce unas superficies lisas. Entonces éstas se desplazan y presionan bajo la descarga. Tras tocarse los extremos, ambas fibras permanecen presionadas debido al movimiento. El calentamiento, por otro lado, continúa incluso una vez que ha cesado el desplazamiento. El tiempo de descarga para la prefusión es inferior a 1 segundo. Por otro lado, el tiempo global de descarga es de unos pocos segundos y para fibras monomodo resulta relativamente pequeño en comparación con el necesario para fibras multimodo. Con este método se obtienen bajas pérdidas en la región del empalme incluso para superficies no perfectas. Dado que es difícil obtener superficies perfectamente pulidas fuera del laboratorio, este método resulta beneficioso en la construcción de una máquina empalmadora para estos fines.

Método HHT. En la práctica existen dos tipos de descargas eléctricas que se clasifican en descarga de corriente continua (DC) y descarga de corriente alterna (AC). En general, una descarga AC se prefiere sobre una descarga DC. En el caso de una descarga DC solamente se gasta un electrodo, mientras que en la descarga AC se gastan simultáneamente y de forma simétrica los dos electrodos. El método HHT pertenece precisamente al grupo de descargas AC, y como se verá a continuación una descarga de alta frecuencia posee propiedades beneficiosas.

En el circuito de alimentación utilizado en el método HHT, un voltaje DC de entrada de 12 V se convierte a una señal pulsante de frecuencia 20-40 kHz mediante conmutación empleando dispositivos semiconductores. Estas frecuencias de trabajo son bastante comunes en el caso de circuitos de alimentación de potencia y existen gran cantidad de componentes semiconductores disponibles. El generador de disparo situado a la salida de un transformador y compuesto de diodos y condensadores se encarga de activar los electrodos de descarga. Finalmente, existe un circuito de realimentación para el control de la conmutación.

Técnicas de alineamiento de fibras

Tanto los métodos de prefusión como de descarga estable son importantes para conseguir bajas pérdidas en los empalmes. Sin embargo, también resulta crucial un buen alineamiento previo de las fibras. Las distintas técnicas de alineamiento pueden clasificarse en fijas y móviles

Técnica fija

En la técnica fija las fibras no se desplazan lateralmente, sino que éstas se sitúan en posiciones predeterminadas. Éste método se conoce también como alineamiento pasivo y es ampliamente utilizado en las máquinas empalmadoras debido a su simplicidad. Cuando se utilizan fibras con una excentricidad de núcleo pequeña, este método es válido no sólo para fibras multimodo sino también para fibras monomodo. Dado que las tecnologías de fabricación de fibras han mejorado en la actualidad, es posible conseguir empalmes de varias fibras monomodo de forma simultánea con valores de pérdidas inferiores a 0,05 dB utilizando máquinas que emplean esta técnica.

Técnica móvil

En las técnicas móviles las fibras se desplazan lateralmente hasta obtener posiciones precisas previamente a la descarga. Este método se conoce también con el nombre de alineamiento activo. Hasta la fecha se han propuesto múltiples técnicas para realizar el alineamiento, especialmente durante las primeras fases de desarrollo de los empalmes de fibras monomodo, las cuales presentaban una elevada excentricidad en el núcleo en comparación con las fibras actuales.

Técnicas de monitorización de la potencia óptica. Se basa en la medida de la potencia óptica transmitida para realizar el alineamiento. Existen tres posibilidades dependiendo de los puntos del sistema que se utilizan para realizar la medida. Tanto la inyección como la detección de potencia se realizan en la mayoría de los casos por medio de la curvatura de la fibra.

Métodos Visuales. Son otras de las técnicas no fijas de alineamiento de fibras. En una de las técnicas se utiliza un microscopio para observar en una dirección o en dos direcciones perpendiculares los diámetros exteriores de las dos fibras. Para observar las dos direcciones se coloca un espejo cerca de las fibras. La imagen aumentada puede verse directamente o indirectamente, en este último caso a través de un monitor de TV y una cámara. Dado que para el alineamiento se utiliza como referencia el diámetro exterior de las fibras, esta técnica es poco eficiente en el caso de fibras monomodo con excentricidad en el núcleo. Para ello debería utilizarse algún método de monitorización directa del núcleo, como por ejemplo: el uso de la fluorescencia de un núcleo de sílice dopado con Germanio y excitado con luz ultravioleta, el uso de un microscopio de contraste por interferencia diferencial, el uso de un divisor de haz y luces inyectadas en ambas direcciones o el uso de un microscopio ordinario.

Técnica de sensado de luz. También pertenece al conjunto de técnicas móviles. En esta técnica se detectan las posiciones de las fibras en dos direcciones perpendiculares por medio de dos sensores de luz por cada fibra, por lo que son necesarios cuatro sensores en total.

En las técnicas móviles resulta imprescindible la presencia de mecanismos muy precisos para realizar los movimientos finos que se precisan durante el alineamiento. Algunos mecanismos propuestos consisten en una plataforma móvil de precisión controlada por un motor, un dispositivo piezoeléctrico o un dispositivo de deformación elástica. Las características de linealidad en el movimiento, desplazamiento máximo y tamaño dependen de la técnica de alineamiento y del diseño de la máquina empalmadora.
Protección del empalme


Generalmente la cubierta de las fibras se elimina previamente a la realización del empalme. Durante el proceso consistente en eliminar las cubiertas, cortar las fibras y situarlas en la máquina empalmadora, e incluso en el proceso de calentamiento, se producen grietas en las fibras que debilitan su resistencia. La resistencia de las fibras tras realizar un empalme se reduce en un 10% aproximadamente, por lo que se hace necesaria la posterior protección de la zona tratada.

A la hora de seleccionar un método de protección se deben considerar factores tales como: fiabilidad (variación de las pérdidas de empalme y rotura), facilidad de manejo y coste. Cuando el método de protección o su diseño no es bueno, las pérdidas del empalme sufren gran variación con la temperatura. Si por el contrario se realiza de forma adecuada, las pérdidas varían tan sólo 0,02 dB para rangos de temperatura desde -30 ºC hasta +60 ºC. De entre los distintos métodos de protección utilizados destacan: una ranura con forma de V (V-groove) de plástico con cubierta, un par de láminas de cristal cerámico, un tubo que se contrae con el calor junto con una varilla de acero o un molde de plástico. Finalmente, para la sujeción se utilizan como adhesivos una reacción química, la fundición del material o resinas fotosensibles.
Cajas de empalme


Los empalmes exteriores se protegen dentro de una caja de empalme, la cual posee en un extremo unos tubos cerrados que se cortarán en su extremo por donde deba pasar un cable, para luego sellarse con termocontraíbles. La caja posee una tapa o domo que se cierra sobre la base con una abrazadera sobre un o-ring. Sobre el domo se encuentra la válvula de presurización. En la base se encuentran las borneras para sujetar los elementos de tracción de los cables y la puesta a tierra que también asoma al exterior de la caja. También están las bandejas donde se sitúan la reserva de FO desnuda y los empalmes. Del otro lado de las bandejas hay espacio para situar la reserva (ganancia) de buffers aunque puede existir una bandeja para tal fin

Distribuidores para centrales


En cada extremo de un enlace de FO se encuentran los distribuidores en donde se empalma cada fibra a un cable de una fibra conectorizado, denominado PIGTAIL. Estos están numerados y se conectan a uno de los extremos de un acoplador fijado al gabinete, a donde luego se conectarán los jumpers de los equipos de transmisión o de los medidores. Poseen tapas atornilladas para tapar los conectores y además unos cassettes o bandejas donde residen los empalmes y la reserva. Tienen además borneras de sujeción para los elementos de tracción del cable o boquillas cónicas para sujetarlo. Van atornillados en rieles arriba y abajo en el "vertical", o en un rack.
Máquinas de empalme de fibras


Existen disponibles comercialmente multitud de máquinas de fácil manejo para realizar automáticamente el empalme de diversos tipos de fibras ópticas: monomodo, multimodo, fibras de dispersión desplazada, fibras mantenedoras de polarización, etc. La mayoría emplean los métodos de prefusión y HHT para realizar la unión. Para su funcionamiento disponen de una pequeña batería interna de 12 V o de conexión a la red. En la figura 4.8 se muestra un ejemplo de una de estas máquinas y en la tabla 4.2 se resumen sus principales características



jueves, 30 de julio de 2015

Transmisores y receptores ópticos.

Transmisores y receptores ópticos.

Receptor Óptico

El propósito del receptor óptico es extraer la información contenida en una portadora óptica que incide en el fotodetector. En los sistemas de transmisión analógica el receptor debe amplificar la salida del fotodetector y después demodularla para obtener la información. En los sistemas de transmisión digital el receptor debe producir una secuencia de pulsos (unos y ceros) que contienen la información del mensaje transmitido.
Una configuración básica es el receptor de detección directa, el fotodetector convierte el flujo de los fotones incidentes en un flujo de electrones. Después esta corriente es amplificada y procesada. Existen dos tipos de fotodiodos usuales para recepción óptica, fotodiodo PIN y fotodiodo de avalancha APD.
En la práctica, para los receptores de detección directa con fotodiodos PIN, el factor limitante de la sensibilidad del receptor es el ruido térmico, generado en la sali
da del fotodiodo. Existe dos  alternativas para superar esta limitación, una  es el uso de fotodiodo de avalancha APD, donde el mecanismo de multiplicación de la corriente fotogenerada en el fotodiodo amplifica la señal fotodetectado. La segunda alternativa es la utilización de un pre-amplificador óptico antes del fotodetector, para amplificar la señal óptica antes de la detección.
Una configuración más compleja de receptor óptico es el empleo de los receptores de detección coherente, con el nivel de potencia del oscilador local tan alto que el ruido térmico se hace mucho menor que el producto del batimiento entre la señal del oscilador local y la señal recibida. La figura presenta el esquema simplificado de detección coherente.
En el caso del esquema coherente, la señal detectada posee una frecuencia intermediaria dada por:
Donde:
fFI es la frecuencia intermediaria
fS es la frecuencia de la señal recibida y
fLO es la frecuencia del oscilador local.

Los receptores ópticos actuales se basan en uno de los dos tipos de detectores: el fotodiodo de avalancha APD y el diodo PIN seguido por un preamplificador de entrada FET (Transistor de Efecto de Campo). Para señales digitales binarias, el caso más común basta con 22dB de relación señal/ruido. Un APD de calidad (de bajo ruido) podría dar una sensibilidad superior. Las relaciones señal eficaz de portadora/ruido eficaz en señales analógicas han de estar entre los 30dB y los 65dB.
Si las señales están moduladas en intensidad, el ruido dominante es el granular (shot) asociado a la corriente media de la señal, para relaciones portadora/ruido mayores de unos 40dB. En estos casos la mejor opción son los receptores PIN-FET.

Transmisor Óptico

En general, el transmisor óptico de un sistema de comunicación por fibra óptica es compuesto por un modulador y una fuente de luz asociada con suyo circuito driver. Una fuente de información genera la señal que se desea transmitir y lo envía para ser adaptado para transmisión en el modulador. La fuente de información, llamada de generador de señales, define el tipo de información a ser transmitida.  Para el caso de una señal digital, la señal es representada por un conjunto de valores, que en general, en comunicación óptica, es binarios. En el caso de una señal analógica, generalmente ella es representada por una combinación de senoides, con varias frecuencias, amplitudes y fases. La figura 3.1 presenta una representación típica de señales digitales y señales analógicas.

Características Básicas de los Transmisores Ópticos

Las características más importantes de un transmisor óptico son la potencia óptica emitida, el espectro de radiación de la fuente óptica y la forma de onda de la señal óptica en la salida del transmisor, que depende de la respuesta en frecuencia del dispositivo. La potencia óptica emitida por el LED es, con una buena aproximación, proporcional a la corriente inyectada, aunque para altos niveles de corriente ella satura, debido a efectos térmicos. La radiación emitida por el LED es incoherente y cubre un amplio espectro de ancho de banda óptico.


Características de transmisión de los LEDs (a)- curva potencia óptica versus corriente inyectada. (b)Espectro de emisión. (c)Respuesta en frecuencia.






miércoles, 29 de julio de 2015

¿Que es Fibra Óptica?

¿Que es Fibra Óptica?

La fibra óptica es un medio de transmisión, empleado habitualmente en redes de datos y telecomunicaciones, consistente en un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede provenir de un láser o un diodo led.


Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de la radio y superiores a las de un cable convencional. Son el medio de transmisión por cable más avanzado, al ser inmune a las interferencias electromagnéticas, y también se utilizan para redes locales donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.
Ventajas
  • Una banda de paso muy ancha, lo que permite flujos muy elevados (del orden del Ghz).
  • Pequeño tamaño, por lo tanto ocupa poco espacio.
  • Gran flexibilidad, el radio de curvatura puede ser inferior a 1 cm, lo que facilita la instalación enormemente.
  • Gran ligereza, el peso es del orden de algunos gramos por kilómetro, lo que resulta unas nueve veces menos que el de un cable convencional.
  • Inmunidad total a las perturbaciones de origen electromagnético, lo que implica una calidad de transmisión muy buena, ya que la señal es inmune a las tormentas, chisporroteo...
  • Gran seguridad: la intrusión en una fibra óptica es fácilmente detectable por el debilitamiento de la energía lumínica en recepción, además, no radia nada, lo que es particularmente interesante para aplicaciones que requieren alto nivel de confidencialidad.
  • No produce interferencias.
  • Insensibilidad a las señales parásitas, lo que es una propiedad principalmente utilizada en los medios industriales fuertemente perturbados (por ejemplo, en los túneles del metro). Esta propiedad también permite la coexistencia por los mismos conductos de cables ópticos no metálicos con los cables de energía eléctrica.
  • Atenuación muy pequeña independiente de la frecuencia, lo que permite salvar distancias importantes sin elementos activos intermedios. Puede proporcionar comunicaciones hasta los 70 km. antes de que sea necesario regenerar la señal, además, puede extenderse a 150 km. utilizando amplificadores láser.
  • Gran resistencia mecánica, lo que facilita la instalación.
  • Resistencia al calor, frío y corrosión.
  • Facilidad para localizar los cortes gracias a un proceso basado en la telemetría, lo que permite detectar rápidamente el lugar donde se hará la reparación de la avería, simplificando la labor de mantenimiento.
  • Con un coste menor respecto al cobre.
  • Factores ambientales.

Desventajas
  • A pesar de las ventajas antes enumeradas, la fibra óptica presenta una serie de desventajas frente a otros medios de transmisión, siendo las más relevantes las siguientes:
  • La alta fragilidad de las fibras.
  • Necesidad de usar transmisores y receptores más costosos.
  • Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de ruptura del cable.
  • No puede transmitir electricidad para alimentar repetidores intermedios.
  • La necesidad de efectuar, en muchos casos, procesos de conversión eléctrica-óptica.
  • La fibra óptica convencional no puede transmitir potencias elevadas.5
  • No existen memorias ópticas.
  • La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados.
  • Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica.
  • Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas

Tipos
Las diferentes trayectorias que puede seguir un haz de luz en el interior de una fibra se denominan modos de propagación. Y según el modo de propagación tendremos dos tipos de fibra óptica: multimodo y monomodo.
Tipos de fibra óptica.
Fibra multimodo
Una fibra multimodo es aquella en la que los haces de luz pueden circular por más de un modo o camino. Esto supone que no llegan todos a la vez. Una fibra multimodo puede tener más de mil modos de propagación de luz. Las fibras multimodo se usan comúnmente en aplicaciones de corta distancia, menores a 2 km, es simple de diseñar y económico.
El núcleo de una fibra multimodo tiene un índice de refracción superior, pero del mismo orden de magnitud, que el revestimiento. Debido al gran tamaño del núcleo de una fibra multimodo, es más fácil de conectar y tiene una mayor tolerancia a componentes de menor precisión.
Dependiendo el tipo de índice de refracción del núcleo, tenemos dos tipos de fibra multimodo:
  • Índice escalonado: en este tipo de fibra, el núcleo tiene un índice de refracción constante en toda la sección cilíndrica, tiene alta dispersión modal.
  • Índice gradual: mientras en este tipo, el índice de refracción no es constante, tiene menor dispersión modal y el núcleo se constituye de distintos materiales.

Además, según el sistema ISO 11801 para clasificación de fibras multimodo según su ancho de banda se incluye el +pichar (multimodo sobre láser) a los ya existentes OM1 y OM2 (multimodo sobre LED).

  • OM1: Fibra 62.5/125 µm, soporta hasta Gigabit Ethernet (1 Gbit/s), usan LED como emisores
  • OM2: Fibra 50/125 µm, soporta hasta Gigabit Ethernet (1 Gbit/s), usan LED como emisores
  • OM3: Fibra 50/125 µm, soporta hasta 10 Gigabit Ethernet (300 m), usan láser (VCSEL) como emisores.

Bajo OM3 se han conseguido hasta 2000 MHz km (10 Gbit/s), es decir, una velocidades 10 veces mayores que con OM1.

Fibra monomodo
Una fibra monomodo es una fibra óptica en la que sólo se propaga un modo de luz. Se logra reduciendo el diámetro del núcleo de la fibra hasta un tamaño (8,3 a 10 micrones) que sólo permite un modo de propagación. Su transmisión es paralela al eje de la fibra. A diferencia de las fibras multimodo, las fibras monomodo permiten alcanzar grandes distancias (hasta 400 km máximo, mediante un láser de alta intensidad) y transmitir elevadas tasas de información (decenas de Gbit/s).